*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
↳ QTRS
↳ DependencyPairsProof
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
*12(+2(x, y), z) -> *12(x, z)
*12(x, oplus2(y, z)) -> *12(x, y)
*12(x, oplus2(y, z)) -> *12(x, z)
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
*12(+2(x, y), z) -> *12(y, z)
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
*12(+2(x, y), z) -> *12(x, z)
*12(x, oplus2(y, z)) -> *12(x, y)
*12(x, oplus2(y, z)) -> *12(x, z)
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
*12(+2(x, y), z) -> *12(y, z)
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(+2(x, y), z) -> *12(x, z)
*12(+2(x, y), z) -> *12(y, z)
Used ordering: Polynomial Order [17,21] with Interpretation:
*12(x, oplus2(y, z)) -> *12(x, y)
*12(x, oplus2(y, z)) -> *12(x, z)
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
POL( *12(x1, x2) ) = max{0, x1 - 2}
POL( +2(x1, x2) ) = x1 + x2 + 3
POL( otimes2(x1, x2) ) = 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
*12(x, oplus2(y, z)) -> *12(x, y)
*12(x, oplus2(y, z)) -> *12(x, z)
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, oplus2(y, z)) -> *12(x, y)
*12(x, oplus2(y, z)) -> *12(x, z)
Used ordering: Polynomial Order [17,21] with Interpretation:
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
POL( *12(x1, x2) ) = max{0, x2 - 2}
POL( oplus2(x1, x2) ) = x1 + x2 + 3
POL( *2(x1, x2) ) = x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
POL( *12(x1, x2) ) = max{0, x2 - 2}
POL( *2(x1, x2) ) = x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))